Influence of Mg Contents on Aging Precipitation Behavior of AI-3.5Cu-xMg Alloy

The influence of Mg content on the microstructures and mechanical properties at room temperatures of A1-3.5Cu- (0.71-1.81)Mg alloys was studied. Precipitation phases in the alloys were identified by TEM and HRTEM. The results show that when Mg contents increase from 0.71 to 1.81 wt%, the precipitate...

Full description

Saved in:
Bibliographic Details
Published in:金属学报:英文版 no. 1; pp. 107 - 114
Main Author: S. Li J. Zhang J. Yang Y. Deng X. Zhang
Format: Journal Article
Language:English
Published: 2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of Mg content on the microstructures and mechanical properties at room temperatures of A1-3.5Cu- (0.71-1.81)Mg alloys was studied. Precipitation phases in the alloys were identified by TEM and HRTEM. The results show that when Mg contents increase from 0.71 to 1.81 wt%, the precipitates are transformed from S, S", 2, and 0 phases to S and St phases, and f2 phase is first observed in A1-3.48Cu-0.71 Mg alloy with Cu/Mg mass ratio of 5 during the conventional aging heat treatment (190 C/12 h). Regard to aging hardness effect of the tested alloys, the hardness of the alloys improves with the increase of Mg content, but the increases become slow when Mg content is greater than 1.35 wt%.
Bibliography:21-1361/TG
AI-Cu-Mg alloy; Mechanical property; Microstructure; Phase transition
The influence of Mg content on the microstructures and mechanical properties at room temperatures of A1-3.5Cu- (0.71-1.81)Mg alloys was studied. Precipitation phases in the alloys were identified by TEM and HRTEM. The results show that when Mg contents increase from 0.71 to 1.81 wt%, the precipitates are transformed from S, S", 2, and 0 phases to S and St phases, and f2 phase is first observed in A1-3.48Cu-0.71 Mg alloy with Cu/Mg mass ratio of 5 during the conventional aging heat treatment (190 C/12 h). Regard to aging hardness effect of the tested alloys, the hardness of the alloys improves with the increase of Mg content, but the increases become slow when Mg content is greater than 1.35 wt%.
ISSN:1006-7191
2194-1289