Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers
To characterize the paracellular route of 2/4/A1 monolayers and to compare the permeabilities of incompletely absorbed oral drugs in 2/4/A1 with those in Caco-2 monolayers. The cells were cultivated on permeable supports. The 2/4/ A1 expression of genes associated with tight junctions was compared w...
Saved in:
Published in: | Pharmaceutical research Vol. 20; no. 3; pp. 397 - 405 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Springer
01-03-2003
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To characterize the paracellular route of 2/4/A1 monolayers and to compare the permeabilities of incompletely absorbed oral drugs in 2/4/A1 with those in Caco-2 monolayers.
The cells were cultivated on permeable supports. The 2/4/ A1 expression of genes associated with tight junctions was compared with that in the small intestine using RT-PCR. The aqueous pore radii were determined using paracellular marker molecules. The permeabilities of a series of incompletely absorbed drugs (defined as having a fraction absorbed 0 to 80%) after oral administration to humans were studied.
Occludin and claudin 1 and 3 were expressed in 2/4/A1. The pore radius of 2/4/A1 was 9.0 +/- 0.2 A. which is similar to that in the human small intestine, although the pore radius was smaller (3.7 +/- 0.1 A) in Caco-2. The relationship between permeability and fraction absorbed of 13 drugs was stronger in 2/4/A1 than in Caco-2. The relationships were used to predict the intestinal absorption of another seven drugs. The prediction was more accurate in 2/4/A1 (RMSE = 15.6%) than in Caco-2 (RMSE = 21.1%). Further, Spearman's rank coefficient between FA and permeability was higher in 2/4/A1.
The improved 2/4/A1 cell culture model has a more in vivo-like permeability and predicted the oral absorption of incompletely absorbed drugs better than Caco-2 cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1023/a:1022699920043 |