Design and Analysis of a Symmetric Joint Module for a Modular Wire-Actuated Robotic Arm with Symmetric Variable-Stiffness Units

Collaborative robots are used in scenarios requiring interaction with humans. In order to improve the safety and adaptability of collaborative robots during human–robot interaction, this paper proposes a modular wire-actuated robotic arm with symmetric variable-stiffness units. The variable-stiffnes...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 16; no. 7; p. 829
Main Authors: Qian, Can, Yang, Kaisheng, Ruan, Yangfei, Hu, Junhao, Shao, Zixuan, Wang, Chongchong, Xie, Chuanqi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collaborative robots are used in scenarios requiring interaction with humans. In order to improve the safety and adaptability of collaborative robots during human–robot interaction, this paper proposes a modular wire-actuated robotic arm with symmetric variable-stiffness units. The variable-stiffness unit is employed to extend the stiffness-adjustment range of the robotic arm. The variable-stiffness unit is designed based on flexure, featuring a compact and simple structure. The stiffness–force relationship of the variable-stiffness unit can be fitted by a quadratic function with an R-squared value of 0.99981, indicating weak nonlinearity. Based on the kinematics and stiffness analysis of the symmetric joint module of the robotic arm, the orientation of the joint module can be adjusted by regulating the length of the wires and the stiffness of the joint module can be adjusted by regulating the tension of the wires. Because of the actuation redundancy, the orientation and stiffness of the joint module can be adjusted synchronously. Furthermore, a direct method is proposed for the stiffness-oriented wire-tension-distribution problem of the 1-DOF joint module. A simulation is carried out to verify the proposed method. The simulation result shows that the deviation between the calculated stiffness and the desired stiffness was less than 0.005%.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16070829