Contact angle hysteresis
In thermodynamic equilibrium, the contact angle is related by Young's equation to the interfacial energies. Unfortunately, it is practically impossible to measure the equilibrium contact angle. When for example placing a drop on a surface its contact angle can assume any value between the advan...
Saved in:
Published in: | Current opinion in colloid & interface science Vol. 59; p. 101574 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-06-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In thermodynamic equilibrium, the contact angle is related by Young's equation to the interfacial energies. Unfortunately, it is practically impossible to measure the equilibrium contact angle. When for example placing a drop on a surface its contact angle can assume any value between the advancing Θa and receding Θr contact angles, depending on how the drop is placed. Θa − Θr is called contact angle hysteresis. Contact angle hysteresis is essential for our daily life because it provides friction to drops. Many applications, such as coating, painting, flotation, would not be possible without contact angle hysteresis. Contact angle hysteresis is caused by the nanoscopic structure of the surfaces. Here, we review our current understanding of contact angle hysteresis with a focus on water as the liquid. We describe appropriate methods to measure it, discuss the causes of contact angle hysteresis, and describe the preparation of surfaces with low contact angle hysteresis. |
---|---|
ISSN: | 1359-0294 1879-0399 |
DOI: | 10.1016/j.cocis.2022.101574 |