Integrated photon pairs source in silicon carbide based on micro-ring resonators for quantum storage at telecom wavelengths
We present the design of an on-chip integrated photon pair source based on Spontaneous Four Wave Mixing (SFWM), implemented on a ring resonator in the 4H Silicon Carbide On Insulator (4H-SiCOI) platform, compatible with a solid state quantum memory in the telecommunications band. Through careful eng...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 17755 - 10 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-08-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the design of an on-chip integrated photon pair source based on Spontaneous Four Wave Mixing (SFWM), implemented on a ring resonator in the 4H Silicon Carbide On Insulator (4H-SiCOI) platform, compatible with a solid state quantum memory in the telecommunications band. Through careful engineering of the waveguide dispersion and micro-ring resonator dimensions, we found solutions where the signal photons are emitted at 1536.48 nm with a bandwidth of
∼
150
MHz, enabling the interaction with the hyperfine structure of Er
3
+
ions. Simultaneously, the idler photons are generated at 1563.86 nm, matching the central wavelength of a specific channel in a commercial dense wavelength division multiplexing system. The proposed device fulfill all the spectral requirements in a simple ring-bus coupled waveguide configuration with design parameters within the range of reported values for similar resonators, making feasible its manufacturing with current fabrication capabilities. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-67411-0 |