Silicon fabricated submicrometer stepper motor for microsurgical procedures

A linear stepper motor has been constructed with submicrometer step size and centimeter travel range. Silicon wafers with conventional dielectrics provide a basic electrostatic clamping mechanism, while a piezoelectric material serves as an electrical-to-mechanical power transducer. Movement is gene...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems Vol. 11; no. 2; pp. 154 - 160
Main Authors: Peichel, D., Marcus, D., Rizq, R.N., Erdman, A.G., Robbins, W.P., Polla, D.L.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-04-2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A linear stepper motor has been constructed with submicrometer step size and centimeter travel range. Silicon wafers with conventional dielectrics provide a basic electrostatic clamping mechanism, while a piezoelectric material serves as an electrical-to-mechanical power transducer. Movement is generated by using the inertial properties of an attached mass coupled with fast and slow expansions and contractions of the piezoelectric material. The fast transitions use the inertia of the mass to move the clamp, while the slow transitions move the mass while keeping the clamp fixed. Five prototype hand-held stepper motors have been successfully built and tested. The components of the motor fit within a pen-sized cylindrical stainless steel shell (15 cm /spl times/ 1.2 cm) and deliver a displacement of 38 mm. For the given operating conditions, the tested handpieces had 1.2 mm/s advancement speeds against a 3 N load. The electrostatic clamp generates an attraction force of about 2 N using a clamp with an area of 3.75 cm/sup 2/ and 150 V across the faces. Maximum step sizes for the piezoelectric transducer (PZT) used here are slightly less than 10 /spl mu/m, and steps less than 100 nm can be obtained with sufficiently low PZT voltages. Motor speed can be controlled by adjusting the operating frequency.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/84.993450