Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer

Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs.Conventional gene targeting in pig somatic cells is extremely inefficient.Zinc-finger nuclease(ZFN)technology has been shown to be a powerful tool for efficiently inducing mutations in the genome.How...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Life sciences Vol. 57; no. 2; pp. 263 - 268
Main Authors: Bao, Lei, Chen, HaiDe, Jong, UiMyong, Rim, CholHo, Li, WenLing, Lin, XiJuan, Zhang, Dan, Luo, Qiong, Cui, Chun, Huang, HeFeng, Zhang, Yan, Xiao, Lei, Fu, ZhiXin
Format: Journal Article
Language:English
Published: Beijing Science China Press 01-02-2014
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs.Conventional gene targeting in pig somatic cells is extremely inefficient.Zinc-finger nuclease(ZFN)technology has been shown to be a powerful tool for efficiently inducing mutations in the genome.However,ZFN-mediated targeting in pigs has rarely been achieved.Here,we used ZFNs to knock out the porcineα-1,3-galactosyl-transferase(GGTA1)gene,which generates Gal epitopes that trigger hyperacute immune rejection in pig-to-human transplantation.Primary pig fibroblasts were transfected with ZFNs targeting the coding region of GGTA1.Eighteen mono-allelic and four biallelic knockout cell clones were obtained after drug selection with efficiencies of 23.4%and 5.2%,respectively.The biallelic cells were used to produce cloned pigs via somatic cell nuclear transfer(SCNT).Three GGTA1 null piglets were born,and one knockout primary fibroblast cell line was established from a cloned fetus.Gal epitopes on GGTA1 null pig cells were completely eliminated from the cell membrane.Functionally,GGTA1 knockout cells were protected from complement-mediated immune attacks when incubated with human serum.This study demonstrated that ZFN is an efficient tool in creating gene-modified pigs.GGTA1 null pigs and GGTA1 null fetal fibroblasts would benefit research and pig-to-human transplantation.
Bibliography:pig,xenotransplantation,ZFNs,GGTA1,biallelic knockout,SCNT
11-5841/Q
Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs.Conventional gene targeting in pig somatic cells is extremely inefficient.Zinc-finger nuclease(ZFN)technology has been shown to be a powerful tool for efficiently inducing mutations in the genome.However,ZFN-mediated targeting in pigs has rarely been achieved.Here,we used ZFNs to knock out the porcineα-1,3-galactosyl-transferase(GGTA1)gene,which generates Gal epitopes that trigger hyperacute immune rejection in pig-to-human transplantation.Primary pig fibroblasts were transfected with ZFNs targeting the coding region of GGTA1.Eighteen mono-allelic and four biallelic knockout cell clones were obtained after drug selection with efficiencies of 23.4%and 5.2%,respectively.The biallelic cells were used to produce cloned pigs via somatic cell nuclear transfer(SCNT).Three GGTA1 null piglets were born,and one knockout primary fibroblast cell line was established from a cloned fetus.Gal epitopes on GGTA1 null pig cells were completely eliminated from the cell membrane.Functionally,GGTA1 knockout cells were protected from complement-mediated immune attacks when incubated with human serum.This study demonstrated that ZFN is an efficient tool in creating gene-modified pigs.GGTA1 null pigs and GGTA1 null fetal fibroblasts would benefit research and pig-to-human transplantation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7305
1869-1889
DOI:10.1007/s11427-013-4601-2