The ArT\'eMiS wide-field submillimeter camera: preliminary on-sky performances at 350 microns
ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 microns). A preliminary version of the instrument equipped with the 350 microns focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 aus...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
09-07-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ArTeMiS is a wide-field submillimeter camera operating at three wavelengths
simultaneously (200, 350 and 450 microns). A preliminary version of the
instrument equipped with the 350 microns focal plane, has been successfully
installed and tested on APEX telescope in Chile during the 2013 and 2014
austral winters. This instrument is developed by CEA (Saclay and Grenoble,
France), IAS (France) and University of Manchester (UK) in collaboration with
ESO. We introduce the mechanical and optical design, as well as the cryogenics
and electronics of the ArTeMiS camera. ArTeMiS detectors are similar to the
ones developed for the Herschel PACS photometer but they are adapted to the
high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4
sub-arrays at 200 microns and 2x8 sub-arrays at 350 and 450 microns. We show
preliminary lab measurements like the responsivity of the instrument to hot and
cold loads illumination and NEP calculation. Details on the on-sky
commissioning runs made in 2013 and 2014 at APEX are shown. We used planets
(Mars, Saturn, Uranus) to determine the flat-field and to get the flux
calibration. A pointing model was established in the first days of the runs.
The average relative pointing accuracy is 3 arcsec. The beam at 350 microns has
been estimated to be 8.5 arcsec, which is in good agreement with the beam of
the 12 m APEX dish. Several observing modes have been tested, like On-The-Fly
for beam-maps or large maps, spirals or raster of spirals for compact sources.
With this preliminary version of ArTeMiS, we concluded that the mapping speed
is already more than 5 times better than the previous 350 microns instrument at
APEX. The median NEFD at 350 microns is 600 mJy.s1/2, with best values at 300
mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will
be installed during the first half of 2015. |
---|---|
DOI: | 10.48550/arxiv.1407.2545 |