The influence of simvastatin on osteoblast functionality in the presence of titanium dioxide particles In-vitro

Leaching of particles from dental titanium implant surfaces into preimplant microenvironment causes detrimental effects on bone cells. The current study investigated influence of simvastatin in mitigating adverse pro-inflammatory effects of titanium dioxide (TiO2) micro (MP) and nano (NP) particles...

Full description

Saved in:
Bibliographic Details
Published in:Archives of oral biology Vol. 167; p. 106065
Main Authors: Fawaz, Ahmad, Mohammed, Marwan Mansoor, Ismail, Asmaa, Rani, K.G.Aghila, Samsudin, A.R.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leaching of particles from dental titanium implant surfaces into preimplant microenvironment causes detrimental effects on bone cells. The current study investigated influence of simvastatin in mitigating adverse pro-inflammatory effects of titanium dioxide (TiO2) micro (MP) and nano (NP) particles on hFOB 1.19 cells in vitro. Viability of hFOB 1.19 cells following exposure to varying concentrations of TiO2 MPs and NPs and simvastatin were measured by XTT assay. hFOB 1.19 cells were treated with 100 µg/mL of TiO2 MPs, 100 µg/mL of TiO2 NPs, 0.1 µM simvastatin, 100 µg/mL of TiO2 MPs+ 0.1 µM simvastatin and 100 µg/mL of TiO2 NPs+ 0.1 µM simvastatin. After 24 h, ROS was measured by flow cytometry. On day 14, real-time PCR analysis for pro-inflammatory cytokines and bone formation markers was done for TNFα, IL1β, osteocalcin, ALP, and Col1 markers; while ALP and RANKL/OPG ratio were determined by colorimetric and ELISA assays respectively. Further, mineralization study using Alizarin Red S staining (ARS) and calcium quantification were performed. Exposure of hFOB to TiO2 MPs and NPs generated ROS and reduced cell viability significantly, with upregulation of pro-inflammatory markers TNFα and IL1β and downregulation of bone formation markers OC and increased RANKL/OPG ratio and lowered degree of mineralization. Treatment with 0.1 µM of simvastatin treatment reversed the effects by mitigating oxidative stress, dampening pro-inflammatory markers, upregulation of bone formation markers, lowering RANKL/OPG ratio and increasing degree of mineralization. Simvastatin possesses antioxidant, anti-inflammatory, and pro-osteogenic properties that may support bone healing around titanium implants. •TiO2 micro (MP) and nano (NP) particles are harmful to hFOB cells.•TiO2 MP and nano NP reduced viability and generated ROS in hFOB cells.•Simvastatin mitigated oxidative stress responses, dampen pro-inflammatory cytokines.•Simvastatin upregulated bone formation markers and lowered RANKL/OPG ratio.•Simvastatin reversed the deleterious effects of TiO2 and improved mineralization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-9969
1879-1506
1879-1506
DOI:10.1016/j.archoralbio.2024.106065