Strain-life approach in thermo-mechanical fatigue evaluation of complex structures
ABSTRACT This paper is a contribution to strain‐life approach evaluation of thermo‐mechanically loaded structures. It takes into consideration the uncoupling of stress and damage evaluation and has the option of importing non‐linear or linear stress results from finite element analysis (FEA). The mu...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures Vol. 30; no. 9; pp. 808 - 822 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-09-2007
Blackwell Science Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
This paper is a contribution to strain‐life approach evaluation of thermo‐mechanically loaded structures. It takes into consideration the uncoupling of stress and damage evaluation and has the option of importing non‐linear or linear stress results from finite element analysis (FEA). The multiaxiality is considered with the signed von Mises method. In the developed Damage Calculation Program (DCP) local temperature‐stress‐strain behaviour is modelled with an operator of the Prandtl type and damage is estimated by use of the strain‐life approach and Skelton's energy criterion. Material data were obtained from standard isothermal strain‐controlled low cycle fatigue (LCF) tests, with linear parameter interpolation or piecewise cubic Hermite interpolation being used to estimate values at unmeasured temperature points. The model is shown with examples of constant temperature loading and random force‐temperature history. Additional research was done regarding the temperature dependency of the Kp used in the Neuber approximate formula for stress‐strain estimation from linear FEA results. The proposed model enables computationally fast thermo‐mechanical fatigue (TMF) damage estimations for random load and temperature histories. |
---|---|
Bibliography: | ArticleID:FFE1154 istex:EF3148E6712D1F50BD5C412013BCF14BE4A94687 ark:/67375/WNG-FVKQFR24-M ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 8756-758X 1460-2695 |
DOI: | 10.1111/j.1460-2695.2007.01154.x |