Behavior and gut bacteria of Partamona helleri under sublethal exposure to a bioinsecticide and a leaf fertilizer

The exposure of bees to agrochemicals during foraging and feeding has been associated with their population decline. Sublethal exposure to agrochemicals can affect behavior and the microbiota. Gut microbiota is associated with insect nutritional health, immunocompetence, and is essential for neutral...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) Vol. 234; pp. 187 - 195
Main Authors: Botina, L.L., Vélez, M., Barbosa, W.F., Mendonça, A.C., Pylro, V.S., Tótola, M.R., Martins, G.F.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exposure of bees to agrochemicals during foraging and feeding has been associated with their population decline. Sublethal exposure to agrochemicals can affect behavior and the microbiota. Gut microbiota is associated with insect nutritional health, immunocompetence, and is essential for neutralizing the damage caused by pathogens and xenobiotics. Research on the effect of the bioinsecticides and fertilizers on the microbiota of bees remains neglected. In this study, we assessed the sublethal effect of both bioinsecticide spinosad and the fertilizer copper sulfate (CuSO4) on the behavior and gut microbiota in forager adults of the stingless bee Partamona helleri (Friese), which is an important pollinator in the Neotropical region. Behavioral assays and gut microbiota profiles were assessed on bees orally exposed to estimated LC5 values for spinosad and CuSO4. The microbiota were characterized through 16S rRNA gene target sequencing. Acute and oral sublethal exposure to spinosad and CuSO4 did not affect the overall activity, flight take-off, and food consumption. However, CuSO4 decreased bee respiration rate and copper accumulated in exposed bees. Exposure to spinosad increased the proportional abundance of the genus Gilliamella, but CuSO4 did not alter the composition of the gut microbiota. In conclusion, sublethal exposure to CuSO4 induces changes in respiration, and spinosad changes the abundance of gut microorganisms of P. helleri. [Display omitted] •Partamona helleri survival was affected by exposures to spinosad and copper sulfate.•The overall behavior was not affected by the exposures.•The respiration rate of bees changed after exposure to copper sulfate.•The richness of the gut bacteria was not affected by the exposures.•Abundance of bacteria of the genus Gilliamella increased after spinosad exposure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2019.06.048