High-performance CeO2:Co nanostructures for the elimination of accidental poisoning caused by CO intoxication
Owing to the global upward trend of accidental carbon monoxide (CO) poisoning in the past 30 years, this work aimed to develop Cobalt-doped CeO2 particles by the microwave-assisted hydrothermal route under distinct conditions. Their structural, morphological, spectroscopic and electrical behaviors w...
Saved in:
Published in: | Open ceramics Vol. 12; p. 100298 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier
01-12-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to the global upward trend of accidental carbon monoxide (CO) poisoning in the past 30 years, this work aimed to develop Cobalt-doped CeO2 particles by the microwave-assisted hydrothermal route under distinct conditions. Their structural, morphological, spectroscopic and electrical behaviors were investigated to correlate the influence of Co on their properties with the introduction of oxygen vacancies and their sensing capability to assist in the mitigation of CO poisoning cases. The samples were crystalline and had no secondary phases. Two distinct activation energies for the electrical conduction processes were observed due to dopant influence, corroborating the local cluster-to-cluster charge transfer (CCCT) mechanism, resulting in a response time of only 3s for the 4% Co-doped sample. On the other hand, through positron annihilation studies we showed that the oxygen vacancies are preferentially formed near Co ions, reducing the Co ion charge and leading to the formation of neutral VO-Co+2 complex clusters. |
---|---|
ISSN: | 2666-5395 2666-5395 |
DOI: | 10.1016/j.oceram.2022.100298 |