A Systematic Review on Privacy-Aware IoT Personal Data Stores
Data from the Internet of Things (IoT) enables the design of new business models and services that improve user experience and satisfaction. These data serve as important information sources for many domains, including disaster management, biosurveillance, smart cities, and smart health, among other...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 24; no. 7; p. 2197 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data from the Internet of Things (IoT) enables the design of new business models and services that improve user experience and satisfaction. These data serve as important information sources for many domains, including disaster management, biosurveillance, smart cities, and smart health, among others. However, this scenario involves the collection of personal data, raising new challenges related to data privacy protection. Therefore, we aim to provide state-of-the-art information regarding privacy issues in the context of IoT, with a particular focus on findings that utilize the Personal Data Store (PDS) as a viable solution for these concerns. To achieve this, we conduct a systematic mapping review to identify, evaluate, and interpret the relevant literature on privacy issues and PDS-based solutions in the IoT context. Our analysis is guided by three well-defined research questions, and we systematically selected 49 studies published until 2023 from an initial pool of 176 papers. We analyze and discuss the most common privacy issues highlighted by the authors and position the role of PDS technologies as a solution to privacy issues in the IoT context. As a result, our findings reveal that only a small number of works (approximately 20%) were dedicated to presenting solutions for privacy issues. Most works (almost 82%) were published between 2018 and 2023, demonstrating an increased interest in the theme in recent years. Additionally, only two works used PDS-based solutions to deal with privacy issues in the IoT context. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24072197 |