Dendroremediation Potential of Six Quercus Species to Polluted Soil in Historic Copper Mining Sites

Green remediation of severely contaminated soils around mining sites can be achieved using suitable woody plants such as Quercus species, but their phytoremediation potential has not been well evaluated yet. Six Quercus species, which were popular in ecological restoration and landscape application...

Full description

Saved in:
Bibliographic Details
Published in:Forests Vol. 14; no. 1; p. 62
Main Authors: Yini Cao, Liangqian Yu, Ning Dang, Lixiang Sun, Pingxuan Zhang, Jiwu Cao, Guangcai Chen
Format: Journal Article
Language:English
Published: MDPI AG 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green remediation of severely contaminated soils around mining sites can be achieved using suitable woody plants such as Quercus species, but their phytoremediation potential has not been well evaluated yet. Six Quercus species, which were popular in ecological restoration and landscape application in east China, were selected and evaluated for their phytoremediation potential of metal polluted soil using a pot experiment that lasted for 150 d. The results suggested that Quercus species exhibited high tolerance to multi-metal contamination of Cu (9839 mg · kg−1), Cd (8.5 mg · kg−1), and Zn (562 mg · kg−1) with a tolerance index (TI) ranging from 0.52 to 1.21. Three Quercus (Q. pagoda, Q. acutissima, and Q. nuttallii) showed relatively higher tolerance with TIs of 1.08, 1.09, and 1.21, respectively. Above-ground tissues accounted for most of the total biomass in T1 (mixture of clean and polluted soil, 50%) and T2 (100% polluted soil) treatments for most species. The Cu contents in plant tissues were in the order of root > leaf > stem, whereas Zn exhibited the order of leaf > stem > root, and Cd showed divergent mobility within the Quercus species. All the Quercus species exhibited higher capacity for Zn phytoextraction with translocation factor (TF) over 1 and Cu/Cd phytostabilization with TFs lower than 1. The analytic hierarchy process-entropy weight model indicated that Q. virginiana and Q. acutissima were two excellent species with evident phytoremediation capacity of Cu, Cd, and Zn co-contaminated soil. Taken together, Quercus species showed great potential for phytoremediation of soils severely polluted by Cu, Cd, and Zn around historic mining sites. Application of Quercus species is a green remediation option with low-maintenance cost and prospective economic benefit for phytomanagement of historic mining sites.
ISSN:1999-4907
DOI:10.3390/f14010062