Internal dose rate due to intake of uranium and thorium by fish from a dam reservoir associated with a uranium mine in Brazil
Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota a...
Saved in:
Published in: | Radiation and environmental biophysics Vol. 63; no. 1; pp. 97 - 107 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-03-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota and uses, as a biological target, and has harmful effects on populations. In the present study, a flooded impoundment created following dam construction in a uranium mine plant undergoing decommissioning was investigated. Internal dose rates due to activity concentration of natural uranium (U
nat
) and
232
Th in omnivorous, phytophagous, and carnivorous fish species were estimated. Radionuclide activity concentrations were obtained by spectrophotometry with arsenazo III in the visible range. The dose rate contribution of
232
Th was lower than that of U
nat
. There were no differences between the internal dose rates to studied fish species due to
232
Th, but there were differences for U
nat
. A dose rate of 2.30·10
–2
µGy∙d
−1
was found due to the two studied radionuclides. Although this value falls below the benchmark for harmful effects, it is important to acknowledge that the assessment did not account for other critical radionuclides from uranium mining, which also contribute to the internal dose. Moreover, the study did not assess external doses. As a result, the possibility cannot be excluded that dose rates at the study area overcome the established benchmarks for harmful effects.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-634X 1432-2099 1432-2099 |
DOI: | 10.1007/s00411-023-01051-2 |