Computational study of IR, Raman, and NMR spectra of 4-methylmethcathinone drug

Molecular electronic structure, IR, UV, and NMR spectra of the most popular cathinone, known as mephedrone or 4-methylmethcathinone (4-MMC), is studied thoroughly by quantum chemical calculation in terms of the density functional theory (DFT). Geometry optimization of 4-MMC and its hydrochloride com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling Vol. 27; no. 1; p. 3
Main Authors: Minaeva, Valentina, Minaev, Boris, Panchenko, Alexander, Pasychnik, Vyacheslav
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular electronic structure, IR, UV, and NMR spectra of the most popular cathinone, known as mephedrone or 4-methylmethcathinone (4-MMC), is studied thoroughly by quantum chemical calculation in terms of the density functional theory (DFT). Geometry optimization of 4-MMC and its hydrochloride complex is performed with the B3LYP functional, and all vibrational frequencies are analyzed in all details. On this background, the IR and Raman spectra are interpreted. The importance of low-frequency terahertz and Raman spectra is stressed for distinguishing of various MMC isomers. The UV spectrum is calculated by time-dependent DFT method which allows complete interpretation of intense absorption bands at 270 and 210 nm as combinations of various ππ*, nπ*, and charge transfer excitations in amino-phenyl moieties. Very informative analysis of UV absorption and NMR spectra provides useful details on the structure-activity relationship for mephedrone molecule.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-020-04658-0