A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's‐associated pathologies

Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry Vol. 148; no. 6; pp. 822 - 836
Main Authors: Cline, Erika N., Das, Arighno, Bicca, Maíra Assunção, Mohammad, Saad N., Schachner, Luis F., Kamel, Josette M., DiNunno, Nadia, Weng, Anthea, Paschall, Jacob D., Bu, Riana Lo, Khan, Faraz M., Rollins, Madeline G., Ives, Ashley N., Shekhawat, Gajendra, Nunes‐Tavares, Nilson, de Mello, Fernando G., Compton, Philip D., Kelleher, Neil L., Klein, William L.
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01-03-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO‐targeting diagnostics and therapeutics, the AβO structures contributing to AD‐associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5‐difluoro‐2,4‐dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50–300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top–down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.‐injected mice, the DFDNB‐stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure‐function studies. The structures of amyloid beta oligomers (AβOs) most germane to the pathogenesis of Alzheimer's disease (AD) are ill‐defined. Here, we demonstrate the utility of the crosslinker 1,5‐difluoro‐2,4‐dinitrobenzene (DFDNB) as a tool for AβO stabilization in structure–function studies. We find that DFDNB‐linked AβOs are detergent‐insensitive and remain in a soluble conformation with time and with increased concentration. Importantly, DFDNB stabilization does not alter the ability of AβOs to invoke potent responses than in multiple AD‐relevant pathogenic assays.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3042
1471-4159
DOI:10.1111/jnc.14647