Grip Control Using Biomimetic Tactile Sensing Systems

We present a proof-of-concept for controlling the grasp of an anthropomorphic mechatronic prosthetic hand by using a biomimetic tactile sensor, Bayesian inference, and simple algorithms for estimation and control. The sensor takes advantage of its compliant mechanics to provide a triaxial force sens...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics Vol. 14; no. 6; pp. 718 - 723
Main Authors: Wettels, N., Parnandi, A.R., Ji-Hyun Moon, Loeb, G.E., Sukhatme, G.S.
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a proof-of-concept for controlling the grasp of an anthropomorphic mechatronic prosthetic hand by using a biomimetic tactile sensor, Bayesian inference, and simple algorithms for estimation and control. The sensor takes advantage of its compliant mechanics to provide a triaxial force sensing end-effector for grasp control. By calculating normal and shear forces at the fingertip, the prosthetic hand is able to maintain perturbed objects within the force cone to prevent slip. A Kalman filter is used as a noise-robust method to calculate tangential forces. Biologically inspired algorithms and heuristics are presented that can be implemented online to support rapid, reflexive adjustments of grip.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2009.2032686