Biomimetic Platelet‐Cloaked Nanoparticles for the Delivery of Anti‐Inflammatory Curcumin in the Treatment of Atherosclerosis

Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti‐inflammatory treatments are success...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials Vol. 13; no. 15; pp. e2302074 - n/a
Main Authors: Fontana, Flavia, Molinaro, Giuseppina, Moroni, Sofia, Pallozzi, Giulia, Ferreira, Mónica P. A., Tello, Rubén Pareja, Elbadri, Khalil, Torrieri, Giulia, Correia, Alexandra, Kemell, Marianna, Casettari, Luca, Celia, Christian, Santos, Hélder A.
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-06-2024
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti‐inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti‐inflammatory payload model and further loaded in lignin‐based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)− Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti‐inflammatory efficacy is demonstrated in endothelial cells by real‐time quantitative polymerase chain reaction and ELISA assay where curcumin‐loaded NPs decrease the expression of Nf‐κb, TGF‐β1, IL‐6, and IL‐1β in lipopolysaccharide‐inflamed cells. Overall, due to the increase in the cell−NP interactions and the anti‐inflammatory efficacy, these NPs represent potential candidates for the targeted anti‐inflammatory treatment of atherosclerosis. Biohybrid nanoparticles (NPs) are developed for the delivery of anti‐inflammatory curcumin in atherosclerosis. Lignin NPs are coated with a tannic acid (TA)‐iron (III) complex and cloaked with fragments of platelet membranes. The particles are cytocompatible and decrease the expression of pro‐inflammatory genes in LPS‐induced inflamed endothelial cells, while the cloaking increases the interaction with the target cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2192-2640
2192-2659
2192-2659
DOI:10.1002/adhm.202302074