The performance of a very sensitive glucose sensor developed with copper nanostructure-supported nitrogen-doped carbon quantum dots
Fluorescent glucose sensors often utilize nanotechnology to detect glucose in a sensitive and targeted manner. Nanoscale materials increase the sensitivity and efficiency of sensors by better understanding and managing the properties and interactions of the structure to be sensed. Nitrogen-doped car...
Saved in:
Published in: | RSC advances Vol. 14; no. 47; pp. 34964 - 34970 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge
Royal Society of Chemistry
29-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fluorescent glucose sensors often utilize nanotechnology to detect glucose in a sensitive and targeted manner. Nanoscale materials increase the sensitivity and efficiency of sensors by better understanding and managing the properties and interactions of the structure to be sensed. Nitrogen-doped carbon quantum dots (N-CQD), which work with the concept of fluorescence quenching or switching on because of specific processes in the presence of glucose, are one type of nanoscale material added to these sensors. In the field of biological material identification, this state-of-the-art technology is recognized as a useful tool. In this work, copper nanostructure-supported nitrogen-doped carbon quantum dots (Cu@N-CQDs) were synthesized by the hydrothermal method. The shape and structure of the fabricated materials were characterized using fluorescence (FL) spectrophotometry, Fourier Transform Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction, and UV-visible spectrophotometry (UV-vis). The proposed sensor has a linear range of 0–140 μM and a limit of detection (LOD) of 29.85 μM, showing high sensitivity and selectivity for glucose sensing by FL. The developed sensor was successfully applied to detect glucose and demonstrated the potential of Cu@N-CQDs as promising candidates for designing sensors for glucose measurement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d4ra06566b |