Assessment the Impacts of Sea-Level Changes on Mangroves of Ceará-Mirim Estuary, Northeastern Brazil, during the Holocene and Anthropocene
Predictions of the effects of modern Relative Sea-Level (RSL) rise on mangroves should be based on decadal-millennial mangrove dynamics and the particularities of each depositional environment under past RSL changes. This work identified inland and seaward mangrove migrations along the Ceará-Mirim e...
Saved in:
Published in: | Plants (Basel) Vol. 12; no. 8; p. 1721 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-04-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predictions of the effects of modern Relative Sea-Level (RSL) rise on mangroves should be based on decadal-millennial mangrove dynamics and the particularities of each depositional environment under past RSL changes. This work identified inland and seaward mangrove migrations along the Ceará-Mirim estuary (Rio Grande do Norte, northeastern Brazil) during the mid-late Holocene and Anthropocene based on sedimentary features, palynological, and geochemical (δ
C, δ
N, C/N) data integrated with spatial-temporal analysis based on satellite images. The data indicated three phases for the mangrove development: (1°) mangrove expansion on tidal flats with estuarine organic matter between >4420 and ~2870 cal yrs BP, under the influence of the mid-Holocene sea-level highstand; (2°) mangrove contraction with an increased contribution of C
terrestrial plants between ~2870 and ~84 cal yrs BP due to an RSL fall, and (3°) mangrove expansion onto the highest tidal flats since ~84 cal yr BP due to a relative sea-level rise. However, significant mangrove areas were converted to fish farming before 1984 CE. Spatial-temporal analysis also indicated a mangrove expansion since 1984 CE due to mangrove recolonization of shrimp farming areas previously deforested for pisciculture. This work mainly evidenced a trend of mangrove expansion due to RSL rise preceding the effects of anthropogenic emissions of CO
in the atmosphere and the resilience of these forests in the face of anthropogenic interventions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants12081721 |