Finite temperature effects on the structural stability of Si-doped HfO2 using first-principles calculations
The structural stabilities of the monoclinic and tetragonal phases of Si-doped HfO2 at finite temperatures were analyzed using a computational scheme to assess the effects of impurity doping. We proposed a method that the finite temperature effects, i.e., lattice vibration and impurity configuration...
Saved in:
Published in: | Applied physics letters Vol. 122; no. 26 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Melville
American Institute of Physics
26-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structural stabilities of the monoclinic and tetragonal phases of Si-doped HfO2 at finite temperatures were analyzed using a computational scheme to assess the effects of impurity doping. We proposed a method that the finite temperature effects, i.e., lattice vibration and impurity configuration effects, are considered. The results show that 6% Si doping stabilizes the tetragonal phase at room temperature, although a higher concentration of Si is required to stabilize the tetragonal phase at zero temperature. These data indicate that lattice vibration and impurity configuration effects are important factors determining structural stability at finite temperatures. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0153188 |