Self-buffering antibody formulations
Monoclonal antibodies (mAbs) often require the development of high-concentration formulations. In such cases, and when it is desirable to formulate a mAb around pH 5.0, we explored a novel approach of controlling the formulation pH by harnessing the ability of mAbs to "self-buffer." Buffer...
Saved in:
Published in: | Journal of pharmaceutical sciences Vol. 97; no. 8; p. 3051 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-08-2008
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monoclonal antibodies (mAbs) often require the development of high-concentration formulations. In such cases, and when it is desirable to formulate a mAb around pH 5.0, we explored a novel approach of controlling the formulation pH by harnessing the ability of mAbs to "self-buffer." Buffer capacities of four representative IgG(2) molecules (designated mAb1 through mAb4) were measured in the pH 4-6 range. The buffer capacity results indicated that the mAbs possessed a significant amount of buffer capacity, which increased linearly with concentration. By 60-80 mg/mL, the mAb buffer capacities surpassed that of 10 mM acetate, which is commonly employed in formulations for buffering in the pH 4-6 range. Accelerated high temperature stability studies (50 degrees C over 3 weeks) conducted with a representative antibody in a self-buffered formulation (50 mg/mL mAb1 in 5.25% sorbitol, pH 5.0) and with solutions formulated using conventional buffers (50 mg/mL mAb1 in 5.25% sorbitol, 25 or 50 mM acetate, glutamate or succinate, also at pH 5.0) indicated that mAb1 was most resistant to the formation of soluble aggregates in the self-buffered formulation. Increased soluble aggregate levels were observed in all the conventionally buffered (acetate, glutamate, and succinate) formulations, which further increased with increasing buffer strength. The long-term stability of the self-buffered liquid mAb1 formulation (60 mg/mL in 5% sorbitol, 0.01% polysorbate 20, pH 5.2) was comparable to the conventionally buffered (60 mg/mL in 10 mM acetate or glutamate, 5.25% sorbitol, 0.01% polysorbate 20, pH 5.2) formulations. No significant change in pH was observed after 12 months of storage at 37 and 4 degrees C for the self-buffered formulation. The 60 mg/mL self-buffered formulation of mAb1 was also observed to be stable to freeze-thaw cycling (five cycles, -20 degrees C --> room temperature). Self-buffered formulations may be a better alternative for the development of high-concentration antibody and protein dosage forms. |
---|---|
ISSN: | 1520-6017 |
DOI: | 10.1002/jps.21232 |