The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes
Docosahexaenoic acid (DHA, 22:6 n-3) from fish oil, and butyrate, a fiber fermentation product, work coordinately to protect against colon tumorigenesis in part by inducing apoptosis. We have recently demonstrated that dietary DHA is incorporated into mitochondrial membrane phospholipids, thereby en...
Saved in:
Published in: | Carcinogenesis (New York) Vol. 26; no. 11; pp. 1914 - 1921 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Oxford University Press
01-11-2005
Oxford Publishing Limited (England) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Docosahexaenoic acid (DHA, 22:6 n-3) from fish oil, and butyrate, a fiber fermentation product, work coordinately to protect against colon tumorigenesis in part by inducing apoptosis. We have recently demonstrated that dietary DHA is incorporated into mitochondrial membrane phospholipids, thereby enhancing oxidative stress induced by butyrate metabolism. In order to elucidate the subcellular origin of oxidation induced by DHA and butyrate, immortalized young adult mouse colonocytes were treated with 0–200 μM DHA or linoleic acid (LA, 18:2 n-6; control) for 72 h with or without 5 mM butyrate for the final 24 h. Cytosolic reactive oxygen species, membrane lipid oxidation, and mitochondrial membrane potential (MP), were measured by live-cell fluorescence microscopy. After 24 h of butyrate treatment, DHA primed cells exhibited a 151% increase in lipid oxidation (P < 0.01), compared with no butyrate treatment, which could be blocked by a mitochondria-specific antioxidant, 10-(6′-ubiquinoyl) decyltriphenylphosphonium bromide (MitoQ) (P < 0.05). Butyrate treatment of LA pretreated cells did not show any significant effect. In the absence of butyrate, DHA treatment, compared with LA, increased resting MP by 120% (P < 0.01). In addition, butyrate-induced mitochondrial membrane potential (MP), dissipation was 21% greater in DHA primed cells as compared with LA at 6 h. This effect was reversed by preincubation with inhibitors of the mitochondrial permeability transition pore, cyclosporin A or bongkrekic acid (1 μM). The functional importance of these events is supported by the demonstration that DHA and butyrate-induced apoptosis is blocked by MitoQ. These data indicate that DHA and butyrate potentiate mitochondrial lipid oxidation and the dissipation of MP which contribute to the induction of apoptosis. |
---|---|
Bibliography: | istex:052DD8BB93B5CFF2A4ECE615CA4C7336BC3542AC To whom correspondence should be addressed. Tel: +979 845 0448; Fax: +979 862 2662; Email: r-chapkin@tamu.edu local:bgi163 ark:/67375/HXZ-PBHQ9M9M-B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0143-3334 1460-2180 |
DOI: | 10.1093/carcin/bgi163 |