Detailed analysis of Ethereum network on transaction behavior, community structure and link prediction
Ethereum, the second-largest cryptocurrency after Bitcoin, has attracted wide attention in the last few years and accumulated significant transaction records. However, the underlying Ethereum network structure is still relatively unexplored. Also, very few attempts have been made to perform link pre...
Saved in:
Published in: | PeerJ. Computer science Vol. 7; p. e815 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
PeerJ. Ltd
10-12-2021
PeerJ, Inc PeerJ Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ethereum, the second-largest cryptocurrency after Bitcoin, has attracted wide attention in the last few years and accumulated significant transaction records. However, the underlying Ethereum network structure is still relatively unexplored. Also, very few attempts have been made to perform link predictability on the Ethereum transactions network. This paper presents a Detailed Analysis of the Ethereum Network on Transaction Behavior, Community Structure, and Link Prediction (DANET) framework to investigate various valuable aspects of the Ethereum network. Specifically, we explore the change in wealth distribution and accumulation on Ethereum Featured Transactional Network (EFTN) and further study its community structure. We further hunt for a suitable link predictability model on EFTN by employing state-of-the-art Variational Graph Auto-Encoders. The link prediction experimental results demonstrate the superiority of outstanding prediction accuracy on Ethereum networks. Moreover, the statistic usages of the Ethereum network are visualized and summarized through the experiments allowing us to formulate conjectures on the current use of this technology and future development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2376-5992 2376-5992 |
DOI: | 10.7717/peerj-cs.815 |