Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium

During wood decay, the white-rot basidiomycete Phanerochaete chrysosporium secretes low-molecular-mass glycoproteins that catalyze a redox reaction between O 2 and electron donors to produce hydroxyl radical. This reaction accounts for most of the hydroxyl radical produced in wood-degrading cultures...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology Vol. 128; no. 3; pp. 500 - 511
Main Authors: Tanaka, Hiromi, Yoshida, Gou, Baba, Yousuke, Matsumura, Kenta, Wasada, Hiroshi, Murata, Jirou, Agawa, Mana, Itakura, Shuji, Enoki, Akio
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 20-02-2007
Amsterdam Elsevier
New York, NY
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During wood decay, the white-rot basidiomycete Phanerochaete chrysosporium secretes low-molecular-mass glycoproteins that catalyze a redox reaction between O 2 and electron donors to produce hydroxyl radical. This reaction accounts for most of the hydroxyl radical produced in wood-degrading cultures of P. chrysosporium. In combination with phenol oxidases, hydroxyl radical is believed to play a role in lignin degradation. The secreted glycoproteins also reduce Fe(III) to Fe(II) and strongly bind Fe(II). The partially purified glycoproteins contain 1-amino-1-deoxy-2-ketose (ketoamine) produced by the condensation of side-chain amino groups and carbohydrate. cDNAs and two putative genes encoding these glycoproteins, glp1 and glp2, have been isolated and sequenced. The 875 bp glp1 and 864 bp glp2 are found on scaffold 2 of the P. chrysosporium genome. These presumptive genes each consist of seven introns and eight exons. The latter encode a predicted protein of 138 amino acids and a 22-amino-acid signal sequence for secretion. The predicted protein sequences are nearly identical to N-terminal and internal sequences obtained from the partially purified glycoprotein. The molecular masses of the deduced mature proteins, 13,981 ( glp1) and 13,970 ( glp2), coincide with the molecular mass of the glycoprotein as determined by tricine-SDS-PAGE.
Bibliography:http://dx.doi.org/10.1016/j.jbiotec.2006.12.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2006.12.010