Effect of Phase Fluctuation on the Proper Operation of Smart Gear Health Monitoring System

A smart gear sensor system has been developed for the condition monitoring of gear. This system includes a smart gear-the operation gear and a monitoring antenna. The analysis of the return loss of the monitoring antenna magnetically coupled with the smart gear gives the health condition of the gear...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 9; p. 3231
Main Authors: Mac, Thanh-Tung, Iba, Daisuke, Matsushita, Yusuke, Mukai, Seiya, Miura, Nanako, Masuda, Arata, Moriwaki, Ichiro
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22-04-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A smart gear sensor system has been developed for the condition monitoring of gear. This system includes a smart gear-the operation gear and a monitoring antenna. The analysis of the return loss of the monitoring antenna magnetically coupled with the smart gear gives the health condition of the gear. This research considers the effects of the distance and phase fluctuations between two components on the magnetic resonant return loss. The impacts of phase fluctuations include both static and high-speed conditions. Two experimental rigs have been built for the two cases. The coupling distance and static phase fluctuation are conducted via the first experimental rig. The second experimental rig performs both the coupling distance and phase fluctuation effect simultaneously while the smart gear rotates at high speed. During each test, the monitoring antenna return loss is captured thanks to a network analyzer. Analysis of the return loss data demonstrates that both the coupling distance and the change of the phase angle at the static condition and high speed have influenced the resonant return loss of the monitoring antenna. These findings are meaningful to the authors for evaluating and improving the accuracy of this gear health monitoring technique.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22093231