Short-term geomorphological evolution of the Poggio Baldi landslide upper scarp via 3D change detection
On 19 March 2010, a 4 million m 3 landslide occurred at Poggio Baldi, a small village in the Santa Sofia municipality, central Apennines (Forlì-Cesena, Italy). The landslide caused severe damages to some homes and obstructed both the SS310 national road and the Bidente river. The Poggio Baldi landsl...
Saved in:
Published in: | Landslides Vol. 18; no. 7; pp. 2367 - 2381 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-07-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | On 19 March 2010, a 4 million m
3
landslide occurred at Poggio Baldi, a small village in the Santa Sofia municipality, central Apennines (Forlì-Cesena, Italy). The landslide caused severe damages to some homes and obstructed both the SS310 national road and the Bidente river. The Poggio Baldi landslide arose in the “Marnoso-Arenacea Romagnola” formation composed of a pelitic-arenaceous turbiditic sequence. The landslide was classified as a rotational landslide, evolving into a partially confined flow-like landslide and causing the reactivation of the deposit of a previous landslide that took place in 1914. This paper reports a study of the phenomena currently occurring on the 100-m high main scarp of this landslide complex. The aim of the study was to assess ground changes that occurred on the upper scarp from 2015 to 2018 and to infer a preliminary evolutionary model capable of supporting short-term landslide scenarios. For this purpose, multi-station terrestrial laser scanner surveys were performed in 2015, 2016, 2017, and 2018. Additionally, an unmanned aerial vehicle three-dimensional photogrammetric survey was carried out in 2016. Analyses of the three-dimensional digital models of the main scarp made it possible to carry out several exhaustive multi-temporal investigations and to derive a detailed three-dimensional change detection scheme for it. The results showed an active geomorphological evolution of the rock scarp area due to frequent rockfalls and topples (of the order of a few m
3
), with significant local volume changes (a few thousand m
3
/year) and with potential implications for the long-term evolution of the entire slope. |
---|---|
ISSN: | 1612-510X 1612-5118 |
DOI: | 10.1007/s10346-021-01647-z |