Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke
Cigarette smoke (CS) is a main risk factor for chronic obstructive pulmonary disease (COPD). Oxidative stress induced by CS causes DNA and lung damage. Oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD. We studied the effect of oxidative stress genera...
Saved in:
Published in: | Cell death & disease Vol. 4; no. 4; p. e573 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-04-2013
Springer Nature B.V Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cigarette smoke (CS) is a main risk factor for chronic obstructive pulmonary disease (COPD). Oxidative stress induced by CS causes DNA and lung damage. Oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD. We studied the effect of oxidative stress generated by CS both
in vivo
and
in vitro
on murine primary alveolar type II (ATII) cells isolated from nuclear erythroid 2-related factor-2 (Nrf2)
−/−
mice. We determined human primary ATII cell injury by CS
in vitro
and analyzed ATII cells isolated from smoker and non-smoker lung donors
ex vivo
. We also studied whether trolox (water-soluble derivative of vitamin E) could protect murine and human ATII cells against CS-induced DNA damage and/or decrease injury. We analyzed oxidative stress by 4-hydroxynonenal expression, reactive oxygen species (ROS) generation by Amplex Red Hydrogen Peroxide Assay, Nrf2, heme oxygenase 1, p53 and P53-binding protein 1 (53BP1) expression by immonoblotting, Nrf2 nuclear translocation, Nrf2 and p53 DNA-binding activities, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and cytokine production by ELISA. We found that ATII cells isolated from Nrf2
−/−
mice are more susceptible to CS-induced oxidative DNA damage mediated by p53/53BP1 both
in vivo
and
in vitro
compared with wild-type mice. Therefore, Nrf2 activation is a key factor to protect ATII cells against injury by CS. Moreover, trolox abolished human ATII cell injury and decreased DNA damage induced by CS
in vitro
. Furthermore, we found higher inflammation and p53 mRNA expression by RT-PCR in ATII cells isolated from smoker lung donors in comparison with non-smokers
ex vivo
. Our results indicate that the Nrf2 and p53 cross talk in ATII cells affect the susceptibility of these cells to injury by CS. Trolox can protect against oxidative stress, genotoxicity and inflammation induced by CS through ROS scavenging mechanism, and serve as a potential antioxidant prevention strategy against oxidative injury of ATII cells in CS-related lung diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/cddis.2013.96 |