Carbon-13 Hyperpolarization of α-Ketocarboxylates with Parahydrogen in Reversible Exchange
Signal Amplification by Reversible Exchange (SABRE) is a relatively simple and fast hyperpolarization technique that has been used to hyperpolarize the α-ketocarboxylate pyruvate, a central metabolite and the leading hyperpolarized MRI contrast agent. In this work, we show that SABRE can readily be...
Saved in:
Published in: | ChemMedChem p. e202400378 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
04-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Signal Amplification by Reversible Exchange (SABRE) is a relatively simple and fast hyperpolarization technique that has been used to hyperpolarize the α-ketocarboxylate pyruvate, a central metabolite and the leading hyperpolarized MRI contrast agent. In this work, we show that SABRE can readily be extended to hyperpolarize 13C nuclei at natural abundance on many other α-ketocarboxylates. Hyperpolarization is observed and optimized on pyruvate (P13C=17%) and 2-oxobutyrate (P13C=25%) with alkyl chains in the R-group, oxaloacetate (P13C=11%) and alpha-ketoglutarate (P13C=13%) with carboxylate moieties in the R group, and phenylpyruvate (P13C=2%) and phenylglyoxylate (P13C=2%) with phenyl rings in the R-group. New catalytically active SABRE binding motifs of the substrates to the hyperpolarization transfer catalyst-particularly for oxaloacetate-are observed. We experimentally explore the connection between temperature and exchange rates for all of these SABRE systems and develop a theoretical kinetic model, which is used to fit the hyperpolarization build-up and decay during SABRE activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1860-7179 1860-7187 1860-7187 |
DOI: | 10.1002/cmdc.202400378 |