Optimization of a femtosecond pulse self-compression region along a filament in air
We have identified the pulse self-compression region in a filament produced by 55 fs, 4 mJ, 805 nm radiation propagating in air without geometrical focusing. In our experiment the pulse self-compression region is attained by the propagation distance, where the shortest wavelength in the supercontinu...
Saved in:
Published in: | Applied physics. B, Lasers and optics Vol. 91; no. 1; pp. 35 - 43 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-04-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have identified the pulse self-compression region in a filament produced by 55 fs, 4 mJ, 805 nm radiation propagating in air without geometrical focusing. In our experiment the pulse self-compression region is attained by the propagation distance, where the shortest wavelength in the supercontinuum blue wing reaches a minimum, and the growing conversion efficiency to white light has a large gradient. Numerical tracking of the pulse along the filament shows a single-peak 9 fs pulse with a flat spectral phase at the optimum compression distance. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-008-2959-9 |