Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles
Janus particles are used on a multigram scale for the blend compatibilization of two polymers in a twin screw mini-mixer. It is shown that the Janus particles can be located exclusively at the interface of the two polymer phases despite the high temperature and shear conditions. The domain sizes of...
Saved in:
Published in: | ACS nano Vol. 2; no. 6; pp. 1167 - 1178 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
01-06-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Janus particles are used on a multigram scale for the blend compatibilization of two polymers in a twin screw mini-mixer. It is shown that the Janus particles can be located exclusively at the interface of the two polymer phases despite the high temperature and shear conditions. The domain sizes of the dispersed phase decrease with increasing content of Janus particles. The decrease is yet ongoing for high contents of Janus particles. Furthermore, the biphasic particles exhibit an ordered arrangement at the interface. Thus, the approach demonstrates that a nanoscopic structuring of the interface can be achieved under macroscopic processing conditions. The structural order occurs on two levels. The first is the complete adsorption at the interface and the second is the lateral ordering at the interface. The strong adsorption at the interface is explained in terms of the increased desorption energy of Janus particles. Secondly, the compatibilization efficiency is critically compared to state-of-the-art compatibilizers. The efficiency of the Janus particles is found to be superior as compared to block copolymer-based compatibilizers. The efficiency gap between Janus particles and block copolymer compatibilizers widens for larger amounts added. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn800108y |