Generalized quasilinear equations with critical growth and nonlinear boundary conditions

We study the quasilinear problem $$\displaylines{ -\text{div}(h^2(u)\nabla u) + h(u)h'(u)|\nabla u|^2+u =-\lambda |u|^{q-2}u+|u|^{2 \cdot 2^*-2}u\quad \text{in } \Omega, \cr \frac{\partial u}{\partial\eta}= \mu g(x,u) \quad \text{on } \partial \Omega, }$$ where \(\Omega \subset \mathbb{R}^3\) i...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations Vol. Special Issues; no. Special Issue 01; pp. 327 - 344
Main Authors: Maia, Liliane de A., Oliveira Junior, Jose Carlos, Ruviaro, Ricardo
Format: Journal Article
Language:English
Published: Texas State University 27-06-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the quasilinear problem $$\displaylines{ -\text{div}(h^2(u)\nabla u) + h(u)h'(u)|\nabla u|^2+u =-\lambda |u|^{q-2}u+|u|^{2 \cdot 2^*-2}u\quad \text{in } \Omega, \cr \frac{\partial u}{\partial\eta}= \mu g(x,u) \quad \text{on } \partial \Omega, }$$ where \(\Omega \subset \mathbb{R}^3\) is a bounded domain with regular boundary \(\partial \Omega\), \(\lambda,\mu>0\), \(1<q<4\), \(2\cdot2^{\ast}=12\), \(\frac{\partial }{\partial\eta}\) is the outer normal derivative and \(g\) has a subcritical growth in the sense of the trace Sobolev embedding. We prove a regularity result for all weak solutions for a modified, and introducing a new type of constraint, we obtain a multiplicity of solutions, including the existence of a ground state. For more information see  https://ejde.math.txstate.edu/special/01/m3/abstr.html
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.sp.01.m3