Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography

We characterize the in vivo changes over time in the retinal structure of wild-type mice alongside two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice) using spectral domain optical coherence tomography (SD-OCT). SD-OCT images were obtained using the Bioptigen spectr...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science Vol. 53; no. 8; pp. 4644 - 4656
Main Authors: Pennesi, Mark E, Michaels, Keith V, Magee, Sienna S, Maricle, Anastasiya, Davin, Sean P, Garg, Anupam K, Gale, Michael J, Tu, Daniel C, Wen, Yuquan, Erker, Laura R, Francis, Peter J
Format: Journal Article
Language:English
Published: United States The Association for Research in Vision and Ophthalmology 10-07-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We characterize the in vivo changes over time in the retinal structure of wild-type mice alongside two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice) using spectral domain optical coherence tomography (SD-OCT). SD-OCT images were obtained using the Bioptigen spectral domain ophthalmic imaging system (SDOIS). Wild-type C57BL/6J, rd1 and rd10 mice ranging in age from P14 to P206 were sedated with 1% isoflurane. Horizontal and vertical linear scans through the optic nerve, and annular scans around the optic nerve were obtained. SD-OCT imaging of wild-type mice demonstrated visibility of the inner segment/outer segment (IS/OS) junction, external limiting membrane (ELM), outer nuclear layer (ONL), and outer plexiform layer (OPL). At P14, most rd10 mice exhibited normal SD-OCT profiles, but some displayed changes in the IS/OS junction. At the same time point, rd1 mice had severe outer retinal degeneration. In rd10 mice, imaging revealed loss of the IS/OS junction by P18, hyperreflective changes in the ONL at P20, hyperreflective vitreous opacities, and shallow separation of the neural retina from the RPE. Retinal separations were not observed in rd1 mice. Segmentation analysis in wild-type mice demonstrated relatively little variability between animals, while in rd10 and rd1 mice there was a steady decline in outer retinal thickness. Histologic studies demonstrated correlation of retinal features with those seen on SD-OCT scans. Segmentation analysis provides a quantitative and reproducible method for measuring in vivo retinal changes in mice. SD-OCT provides a non-invasive method of following long-term retinal changes in mice in vivo. Although rd10 and rd1 mice have mutations in the same gene, they demonstrate significantly different features on SD-OCT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.12-9611