Liposome-supported peritoneal dialysis in the treatment of severe hyperammonemia: An investigation on potential interactions
Peritoneal dialysis (PD) performed with transmembrane pH-gradient liposomes was reported to efficiently remove ammonia from the body, representing a promising alternative to current standard-of-care for patients with severe hepatic encephalopathy. In this study, we further characterized the properti...
Saved in:
Published in: | Journal of controlled release Vol. 278; pp. 57 - 65 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
28-05-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Peritoneal dialysis (PD) performed with transmembrane pH-gradient liposomes was reported to efficiently remove ammonia from the body, representing a promising alternative to current standard-of-care for patients with severe hepatic encephalopathy. In this study, we further characterized the properties of liposome-supported peritoneal dialysis (LSPD) by 1) assessing its in-use stability in the presence of ascitic fluids from liver-disease patients; 2) investigating its interactions with drugs that are commonly administered to acute-on-chronic liver failure patients; and 3) analyzing the in vivo extraction profile of LSPD. We found that LSPD fluid maintained its in vitro ammonia uptake capability when combined with ascitic fluids. The co-incubation of selected drugs (e.g., beta-blockers, antibiotics, diuretics) with LSPD fluids and ammonia resulted in limited interaction effects for most compounds except for two fluoroquinolones and propranolol. However, considering the experimental set-up, these results should be interpreted with caution and confirmatory drug-drug interaction studies in a clinical setting will be required. Finally, metabolite-mapping analysis on dialysates of LSPD-treated rats revealed that the liposomes did not remove important metabolites more than a conventional PD fluid. Overall, these findings confirm that LSPD is a potentially safe and effective approach for treating hyperammonemic crises in the context of acute-on-chronic liver failure.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2018.03.030 |