The basement membrane of the isolated rat colonic mucosa. A light, electron and atomic force microscopy study
Basement membranes (BM) are structures of the extracellular matrix (ECM), which are involved in epithelial barriers, but also play an important role in processes such as cell adhesion, cell growth and tissue healing. The aim of this study was to investigate possible effects of cell removal on the st...
Saved in:
Published in: | Annals of anatomy Vol. 196; no. 2-3; pp. 108 - 118 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Elsevier GmbH
01-05-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Basement membranes (BM) are structures of the extracellular matrix (ECM), which are involved in epithelial barriers, but also play an important role in processes such as cell adhesion, cell growth and tissue healing.
The aim of this study was to investigate possible effects of cell removal on the structure of the BM of the colonic mucosa. The superficial epithelium was removed with EDTA and the samples were then mechanically fixed for immunohistochemistry, TEM, SEM and AFM. For SEM and AFM, some samples were also prepared according to the OTO method.
BM marker proteins were detected after cell removal by immunohistochemistry, indicating that BM remains. However, a lamina lucida (LL) was no longer visible in TEM, it disappeared and the BM became slightly thinner. The surface topography of the BM is characterized by the presence of globules, fenestrations and pore-like structures, which were visualized with SEM and AFM. Noteworthy is the visualization for the first time with AFM of a 3D network of fine fibers and filaments (“cords”), which very much resembled that described with TEM by Inoue (1994).
An unresolved question is whether the pore-like structures observed in this study, especially with SEM, actually correspond to the pores of the BM whose existence has been demonstrated functionally.
In conclusion, the structural patterns and changes described could be considered as a reference to evaluate the effects of other decellularization protocols on BMs, such as those used in tissue engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0940-9602 1618-0402 |
DOI: | 10.1016/j.aanat.2014.01.001 |