The Blood Plasma Lipidomic Profile in Atherosclerosis of the Brachiocephalic Arteries

According to the World Health Organization, ischemic stroke is the second leading cause of death in the world. Frequently, it is caused by brachiocephalic artery (BCA) atherosclerosis. Timely detection of atherosclerosis and its unstable course can allow for a timely response to potentially dangerou...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicines Vol. 12; no. 6; p. 1279
Main Authors: Lomonosova, Anastasiia, Gognieva, Daria, Suvorov, Aleksandr, Silantyev, Artemy, Abasheva, Alina, Vasina, Yana, Abdullaev, Magomed, Nartova, Anna, Eroshchenko, Nikolay, Kazakova, Viktoriia, Komarov, Roman, Dzyundzya, Andrey, Danilova, Elena, Shchekochikhin, Dmitry, Kopylov, Philipp
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-06-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:According to the World Health Organization, ischemic stroke is the second leading cause of death in the world. Frequently, it is caused by brachiocephalic artery (BCA) atherosclerosis. Timely detection of atherosclerosis and its unstable course can allow for a timely response to potentially dangerous changes and reduce the risk of vascular complications. Omics technologies allow us to identify new biomarkers that we can use in diagnosing diseases. This research included 90 blood plasma samples. The study group comprised 52 patients with severe atherosclerotic lesions BCA, and the control group comprised 38 patients with no BCA atherosclerosis. Targeted and panoramic lipidomic profiling of their blood plasma was carried out. There was a statistically significant difference ( < 0.05) in the values of the indices saturated fatty acids (FAs), unsaturated FAs, monounsaturated FAs, omega-3, and omega-6. Based on the results on the blood plasma lipidome, we formed models that have a fairly good ability to determine atherosclerotic lesions of the brachiocephalic arteries, as well as a model for identifying unstable atherosclerotic plaques. According only to the panoramic lipidome data, divided into groups according to stable and unstable atherosclerotic plaques, a significant difference was taken into account: value < 0.05 and abs (fold change) > 2. Unfortunately, we did not observe significant differences according to the established plasma panoramic lipidome criteria between patients with stable and unstable plaques. Omics technologies allow us to obtain data about any changes in the body. According to our data, statistically significant differences in lipidomic profiling were obtained when comparing groups with or without BCA atherosclerosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines12061279