Characterizing X-Ray and Solution State Conformations for a Model Qubit System: {Cr 7 Ni} Ring Rotaxanes on a Mixed Metal Triangle
The synthesis of a series of [4]rotaxanes, each consisting of three [2]rotaxanes joined via a central {CrNi2} triangular linker, is reported. The resultant four [4]rotaxanes were characterized by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy. Orientation-sel...
Saved in:
Published in: | Inorganic chemistry |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
17-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis of a series of [4]rotaxanes, each consisting of three [2]rotaxanes joined via a central {CrNi2} triangular linker, is reported. The resultant four [4]rotaxanes were characterized by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy. Orientation-selective 4-pulse double electron-electron resonance (DEER) measurements between the three {Cr7Ni} rings incorporated in each [4]rotaxane reveal that each system is conformationally fluxional in solution, with the most abundant conformations found to differ significantly from the crystal structure geometry for each compound. The degree of similarity between conformations is evaluated using a novel application of the earth mover's distance analysis.The synthesis of a series of [4]rotaxanes, each consisting of three [2]rotaxanes joined via a central {CrNi2} triangular linker, is reported. The resultant four [4]rotaxanes were characterized by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy. Orientation-selective 4-pulse double electron-electron resonance (DEER) measurements between the three {Cr7Ni} rings incorporated in each [4]rotaxane reveal that each system is conformationally fluxional in solution, with the most abundant conformations found to differ significantly from the crystal structure geometry for each compound. The degree of similarity between conformations is evaluated using a novel application of the earth mover's distance analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X 1520-510X |
DOI: | 10.1021/acs.inorgchem.4c03919 |