Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement

Quartz powder (QP) is an inorganic filler that is expected to significantly enhance the dielectric and mechanical properties of epoxy (EP)-based composites applied in copper clad laminates and epoxy molding compounds for 5G applications. As is well-known, the performance of the QP–EP composites is d...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) Vol. 12; no. 7; p. 784
Main Authors: Peiyue Li, Liyun Ma, Zijie Ren, Enjun Xie, Zengzi Wang, Liusha Xie, Huimin Gao, Xinjun Zhou, Jianxin Wu
Format: Journal Article
Language:English
Published: MDPI AG 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quartz powder (QP) is an inorganic filler that is expected to significantly enhance the dielectric and mechanical properties of epoxy (EP)-based composites applied in copper clad laminates and epoxy molding compounds for 5G applications. As is well-known, the performance of the QP–EP composites is directly correlated with the dispersion effect and the compatibility of QP with an EP matrix. Herein, we propose the surface modification method of QP by mixing SCAs of different alkyl chain lengths that contain amino and carbonyl groups. Different characterization methods (FTIR, TGA, XPS, SEM, contact angle measurement, viscosity, and mechanical properties) and molecular dynamics simulation were adopted to study its effect and mechanism. Through dual SCA modification, the viscosity of QP–EP composites was reduced by 11.70%, and the flexural and tensile strengths increased by 16.89% and 30.01%, respectively. In addition, it was revealed that the superiority of dual SCAs originated from the synergistic effect between APTES and SPIS, it was the electrostatic repulsion force between the amino groups of the two SCAs that caused a steric hindrance that activated the steric stabilization effect of SPIS, thus resulting in better dispersion and excellent compatibility. Meanwhile, the amino and carbonyl groups of the SCA interacted with the EP matrix via chemical bonds and hydrogen bonds, thus strengthening the interfacial adhesion between the QP and EP matrix and improving the mechanical performance of QP–EP composites. These results are evidence of the potential of the proposed approach, which is based on the synergistic compounding of SCA with different molecular structures, in powder industrial applications.
ISSN:2075-163X
DOI:10.3390/min12070784