Enrichment of adeno-associated virus serotype 5 full capsids by anion exchange chromatography with dual salt elution gradients
Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or "empty"...
Saved in:
Published in: | Biotechnology and bioengineering Vol. 120; no. 10; pp. 2953 - 2968 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or "empty" capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3592 1097-0290 1097-0290 |
DOI: | 10.1002/bit.28453 |