Regulation of mouse digestive function, intestinal mucosal barrier function, and inflammatory reaction by lycium barbarum polysaccharide pathway through myosin light chain kinase
This research investigated the impacts of lycium barbarum polysaccharide (LBP) on the digestive function, intestinal mucosal barrier function, inflammatory response, and myosin light chain kinase (MLCK) signaling pathway in immunosuppressed mice. 70 mg/kg cyclophosphamide was injected into abdomen f...
Saved in:
Published in: | Heliyon Vol. 10; no. 9; p. e29795 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
15-05-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research investigated the impacts of lycium barbarum polysaccharide (LBP) on the digestive function, intestinal mucosal barrier function, inflammatory response, and myosin light chain kinase (MLCK) signaling pathway in immunosuppressed mice. 70 mg/kg cyclophosphamide was injected into abdomen for the preparation of immune suppression model. Healthy BALB/c mice served as control for the analysis of the differences in gastrointestinal motility and absorptive capacity, intestinal mucosal barrier function, the phagocytic ability of abdominal macrophages, serum immune factor and inflammatory factor levels, and the activation status of the MLCK signaling pathway after continuous gavage with 100 mg/kg LBP. Results revealed a decrease in d-xylose content, phagocytic rate, index of abdominal macrophages, and spleen index in the serum and urine of model mice compared to those of controls. In addition, levels of IgA, IgG, IgM, IL-6 (interleukin-6), IL-12, and interferon-γ (IFN-γ) decreased, while MLCK and myosin light chain (MLC) levels rose (P < 0.01). Versus those in Model group, urine d-xylose content, phagocytic rate, index of abdominal macrophages, spleen index, and the levels of IgA, IgG, IgM, IL-6, IL-12, and IFN-γ of mice undergoing the gavage with LBP increased, while MLCK and p-MLC levels declined (P < 0.05). In conclusion, LBP improved digestive absorption and immune function of immunosuppressed mice and regulated intestinal mucosal barrier immune system by inhibiting MLCK signaling pathway activation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e29795 |