An Experimental Description of the Flow in a Centrifugal Compressor from Alternate Stall to Surge

The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- shrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes....

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal science Vol. 26; no. 4; pp. 289 - 296
Main Authors: Moënne-Loccoz, V., Trébinjac, I., Benichou, E., Goguey, S., Paoletti, B., Laucher, P.
Format: Journal Article
Language:English
Published: Heidelberg Science Press 01-08-2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- shrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a f'wst scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the dif- fuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pres- sure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
Bibliography:11-2853/O4
centrifugal compressor, alternate stall, mild surge, deep surge
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- shrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a f'wst scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the dif- fuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pres- sure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
ISSN:1003-2169
1993-033X
DOI:10.1007/s11630-017-0941-8