Investigation of spiral blood flow in a model of arterial stenosis

Abstract The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360–1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial ste...

Full description

Saved in:
Bibliographic Details
Published in:Medical engineering & physics Vol. 31; no. 9; pp. 1195 - 1203
Main Authors: Paul, Manosh C, Larman, Arkaitz
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-11-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360–1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k – ω model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re = 500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re = 1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2009.07.008