Combination Therapy of Insulin-Like Growth Factor Binding Protein-3 and Retinoid X Receptor Ligands Synergize on Prostate Cancer Cell Apoptosis In vitro and In vivo

We have previously identified the retinoid X receptor-α (RXRα) as an insulin-like growth factor binding protein-3 (IGFBP-3) nuclear binding partner, which is required for IGFBP-3-induced apoptosis. In the current study, we investigated the biological interactions of the RXR ligand, VTP194204 and rhI...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research Vol. 11; no. 13; pp. 4851 - 4856
Main Authors: BINGRONG LIU, LEE, Kuk-Wha, HEJU LI, LIQUN MA, LIN, George L, CHANDRARATNA, Roshantha A. S, COHEN, Pinchas
Format: Journal Article
Language:English
Published: Philadelphia, PA American Association for Cancer Research 01-07-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously identified the retinoid X receptor-α (RXRα) as an insulin-like growth factor binding protein-3 (IGFBP-3) nuclear binding partner, which is required for IGFBP-3-induced apoptosis. In the current study, we investigated the biological interactions of the RXR ligand, VTP194204 and rhIGFBP-3, in vitro and in vivo. In vitro , IGFBP-3 and VTP194204 individually induced apoptosis, and suppressed cell growth in prostate cancer cell lines in an additive manner. In vivo , LAPC-4 xenograft–bearing severe combined immunodeficiency mice treated daily with saline, IGFBP-3, and/or VTP194204 for 3 weeks showed no effect of individual treatments with IGFBP-3 or VTP194204 on tumor growth. However, the combination of IGFBP-3 and VTP194204 treatments inhibited tumor growth by 50% and induced a significant reduction in serum prostate-specific antigen levels. In terminal nucleotidyl transferase–mediated nick end labeling immunohistochemistry of LAPC-4 xenografts, there was modest induction of apoptosis with either IGFBP-3 or VTP194204 individual treatment, but combination therapy resulted in massive cell death, indicating that IGFBP-3 and VTP194204 have a synergistic effect in preventing tumor growth by apoptosis induction. In summary, this is an initial description of the successful therapeutic use of IGFBP-3 as a cancer therapy in vivo, and shows that combination treatment of IGFBP-3 and RXR ligand has a synergistic effect on apoptosis induction leading to substantial inhibition of prostate cancer xenograft growth. Taken together, these observations suggest that combination therapy with IGFBP-3 and RXR ligands may have therapeutic potential for prostate cancer treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-04-2160