Countermeasures Against Blinding Attack on Superconducting Nanowire Detectors for QKD

Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Web of Conferences Vol. 103; pp. 10002 - 1-10002-2
Main Authors: Elezov, M.S., Ozhegov, R.V., Kurochkin, Y.V., Goltsman, G.N., Makarov, V.S.
Format: Journal Article Conference Proceeding
Language:English
Published: Les Ulis EDP Sciences 01-01-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201510310002