Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter
JINST 19 P07006 (2024) We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20$X_0$ and a hadronic copper-sc...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
16-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | JINST 19 P07006 (2024) We present the performance of a full-length prototype of the ALICE Forward
Calorimeter (FoCal). The detector is composed of a silicon-tungsten
electromagnetic sampling calorimeter with longitudinal and transverse
segmentation (FoCal-E) of about 20$X_0$ and a hadronic
copper-scintillating-fiber calorimeter (FoCal-H) of about 5$\lambda_{\rm int}$.
The data were taken between 2021 and 2023 at the CERN PS and SPS beam lines
with hadron (electron) beams up to energies of 350 (300) GeV. Regarding
FoCal-E, we report a comprehensive analysis of its response to minimum ionizing
particles across all pad layers. The longitudinal shower profile of
electromagnetic showers is measured with a layer-wise segmentation of 1$X_0$.
As a projection to the performance of the final detector in electromagnetic
showers, we demonstrate linearity in the full energy range, and show that the
energy resolution fulfills the requirements for the physics needs.
Additionally, the performance to separate two-showers events was studied by
quantifying the transverse shower width. Regarding FoCal-H, we report a
detailed analysis of the response to hadron beams between 60 and 350 GeV. The
results are compared to simulations obtained with a Geant4 model of the test
beam setup, which in particular for FoCal-E are in good agreement with the
data. The energy resolution of FoCal-E was found to be lower than 3% at
energies larger than 100 GeV. The response of FoCal-H to hadron beams was found
to be linear, albeit with a significant intercept that is about factor 2 larger
than in simulations. Its resolution, which is non-Gaussian and generally larger
than in simulations, was quantified using the FWHM, and decreases from about
16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which
is particularly evident at low hadron energies, needs to be further
investigated. |
---|---|
DOI: | 10.48550/arxiv.2311.07413 |