Evidence of Classical Complement Pathway Involvement in a Subset of Patients with Warm Autoimmune Hemolytic Anemia
Introduction: Autoimmune Hemolytic Anemia (AIHA) is caused by autoantibodies that react with red blood cells (RBCs) resulting in predominantly extravascular hemolysis in an FcR and/or complement-dependent manner. In warm AIHA (wAIHA), autoantibodies are generally of the IgG isotype, while in cold ag...
Saved in:
Published in: | Blood Vol. 138; no. Supplement 1; p. 2001 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
23-11-2021
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction: Autoimmune Hemolytic Anemia (AIHA) is caused by autoantibodies that react with red blood cells (RBCs) resulting in predominantly extravascular hemolysis in an FcR and/or complement-dependent manner. In warm AIHA (wAIHA), autoantibodies are generally of the IgG isotype, while in cold agglutinin disease (CAD) they are predominantly of the IgM isotype. It is well established that the classical complement cascade is critical for the pathogenesis of CAD based on therapeutic clinical studies. Published data also suggest that complement activation plays a role in wAIHA, although it is not clear which patients would most benefit from complement-based therapy. To help address this question, we utilized an assay that measures the ability of autoantibodies in patient sera to induce complement deposition on the surface of donor RBCs (based on Meulenbroek, et al., 2015).
Methods: Sera were collected retrospectively from 12 wAIHA patients whose direct antiglobulin tests (DAT) were either IgG+/C3+ or IgG+/C3-. Sera retrospectively collected from two CAD patients were used as positive controls. Individual patient sera were examined in the in vitro complement deposition assay using RBCs from type O+ healthy donors. RBCs and sera were incubated at 37 oC in the presence of either EDTA or an inhibitory antibody against C1q as inhibitors of the classical pathway. RBCs were then stained and processed by flow cytometry to determine the level of C4 deposition.
Results: Sera from both CAD patients deposited C4 on the surface of ~70% of healthy human RBCs in vitro. Four out of twelve (33%) sera from wAIHA patients displayed this activity, and all four of these patients were identified as IgG+/C3+ on DAT. Complement deposition ranged from ~10-60% of the RBCs in wAIHA, suggesting heterogeneity in antibody activity for complement deposition in sera from wAIHA patients. Addition of EDTA or an inhibitory antibody against C1q fully blocked deposition of C4 on RBCs by wAIHA sera, indicating dependence of the classical complement pathway. These results indicate differences in the frequency of classical pathway involvement in CAD versus wAIHA and may help identify a subset of wAIHA patients most likely to respond to anti-C1q therapy.
Conclusions: The hypothesis of classical complement cascade involvement in wAIHA disease in a subset of patients is supported by our results. Critically, complement deposition on the surface of cells by anti-C1q prevented the deposition of a downstream complement marker, C4. Inhibition of C1q has been shown to block activation of all downstream classical complement components, including C3b and C4b involved in extravascular hemolysis and C5b involved in direct cell lysis. The therapeutic potential of blocking classical complement pathway activity in wAIHA is currently being evaluated in an ongoing Phase 2 interventional trial (NCT04691570) assessing efficacy of an anti-C1q drug candidate in wAIHA patients, focusing on those with evidence of classical complement pathway activity.
Teigler: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Low: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Rose: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Cahir-Mcfarland: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Yednock: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Kroon: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Keswani: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Barcellini: Novartis: Honoraria; Bioverativ: Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria; Incyte: Membership on an entity's Board of Directors or advisory committees. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2021-153866 |