Virulence function of the Ustilago maydis sterol carrier protein 2

The peroxisomal sterol carrier protein 2 (Scp2) of the biotrophic maize pathogen Ustilago maydis was detected in apoplastic fluid, suggesting that it might function as a secreted effector protein. Here we analyze the role of the scp2 gene during plant colonization. We used reverse genetics approache...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist Vol. 220; no. 2; pp. 553 - 566
Main Authors: Krombach, Sina, Reissmann, Stefanie, Kreibich, Saskia, Bochen, Florian, Kahmann, Regine
Format: Journal Article
Language:English
Published: England New Phytologist Trust 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The peroxisomal sterol carrier protein 2 (Scp2) of the biotrophic maize pathogen Ustilago maydis was detected in apoplastic fluid, suggesting that it might function as a secreted effector protein. Here we analyze the role of the scp2 gene during plant colonization. We used reverse genetics approaches to delete the scp2 gene, determined stress sensitivity and fatty acid utilization of mutants, demonstrated secretion of Scp2, used quantitative reverse transcription polymerase chain reaction for expression analysis and expressed GFP-Scp2 fusion proteins for protein localization. scp2 mutants were strongly attenuated in virulence and this defect manifested itself during penetration. Scp2 localized to peroxisomes and peroxisomal targeting was necessary for its virulence function. Deletion of scp2 in U. maydis interfered neither with growth nor with peroxisomal β-oxidation. Conventionally secreted Scp2 protein could not rescue the virulence defect. scp2 mutants displayed an altered localization of peroxisomes. Our results show a virulence function for Scp2 during penetration that is probably carried out by Scp2 in peroxisomes. We speculate that Scp2 affects the lipid composition of membranes and in this way ensures the even cellular distribution of peroxisomes.
Bibliography:220
353–356
Redkar & Di Pietro
See also the Commentary on this article by
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15268