Effect of Holding Time on Populations of Microparticles in Spheroidal Graphite Irons

Non-metallic microparticles in spheroidal graphite irons are a product of the inoculation and the Mg-treatment of the liquid melt. Besides the influence on the mechanical properties of these iron–carbon–silicon alloys, they are also responsible for the nucleation and the morphology of the graphite p...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Vol. 53; no. 2; pp. 836 - 847
Main Authors: Michels, L., Pires, A. J. F., Ribeiro, C. A. S., Kroka, B., Hoel, E. G., Ott, E., Hartung, C.
Format: Journal Article
Language:English
Published: New York Springer US 01-04-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-metallic microparticles in spheroidal graphite irons are a product of the inoculation and the Mg-treatment of the liquid melt. Besides the influence on the mechanical properties of these iron–carbon–silicon alloys, they are also responsible for the nucleation and the morphology of the graphite phase. The present investigation is undertaken to study holding time effects of a (Ba, Ca, Al)–ferrosilicon (called Ba-inoculant) and (Ca, Al)–ferrosilicon (called Ca-inoculant) inoculants on the overall distribution of microparticles. Using the 2D to 3D conversions method, which is typically used for graphite nodules, the non-metallic microparticles’ statistical parameters, such as size distributions and number densities, are quantified. The total number of particles is similar after Mg-treatment and inoculation for Ca-inoculant but not for Ba-inoculated samples, which lose approximately 25 pct of microparticles after 1 minute of holding time. Iron treated with the Ca-inoculant loses about 37 pct of its nodules after 5 minutes, while the Ba-inoculated melts maintain their performance even after 10 minutes. Based on extrapolating the trend of the undercooling, Ba-inoculated samples would reach the uninoculated undercooling values in 48 minutes, while Ca-inoculated samples in only 11 minutes. By evaluating the size distributions of the non-metallic microparticles, the Ostwald ripening hypothesis or particle aggregation can be verified. The results suggest that sulfides are more critical for graphite nucleation since they can be correlated with the graphite number densities. However, due to the small difference in the microparticle population of the uninoculated sample with Ca-inoculated samples, other aspects of the fading mechanism need to be considered, such as transient metastable states, since the central hypothesis of loss of inclusions cannot alone explain the decrease in the nucleation frequency of graphite.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-021-02418-w