Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea

Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capab...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; p. 969
Main Authors: Arndt, L., Koleala, T., Orbán, Á., Ibam, C., Lufele, E., Timinao, L., Lorry, L., Butykai, Á., Kaman, P., Molnár, A. P., Krohns, S., Nate, E., Kucsera, I., Orosz, E., Moore, B., Robinson, L. J., Laman, M., Kézsmárki, I., Karl, S.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 12-02-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax . This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings. Here Arndt et al. establish rotating-crystal magneto-optical detection (RMOD) as a near-point-of-care diagnostic tool for malaria detection and report a sensitivity and specificity of 82% and 84%, respectively, as validated by analyzing a clinical population in a high transmission setting in Papua New Guinea.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21110-w